
Trees 



What is a Tree? 

• A tree is a data structure similar to a linked list 
but instead of each node pointing simply to the 
next node in a linear fashion, each node points to 
a number of nodes.  

• Tree is an example of a nonlinear data structure.  

• A tree structure is a way of representing the 
hierarchical nature of a structure in a graphical 
form. 

• In trees ADT (Abstract Data Type), the order of 
the elements is not important.  



Glossary 



Definitions  

• Root: The root of a tree is the node 
with no parents. There can be at 
most one root node in a tree (node 
A in the above example). 

• Edge: An edge refers to the link from 
parent to child (all links in the 
figure). 



• Leaf: A node with no children is 
called leaf node (E,J,K,H and I). 

• Sibblings: Children of same 
parent are called siblings (B,C,D 
are siblings of A, and E,F are the 
siblings of B). 



• Ancestor of a Node: A node p is an ancestor of 
node q if there exists a path from root to q and p 
appears on the path. The node q is called a 
descendant of p.  

– For example, A,C and G are the ancestors of K. 

• Level: The set of all nodes at a given depth is called 
the level of the tree (B, C and D are the same level). 
The root node is at level zero. 

 





• Depth of a node :The depth of a node is the 
length of the path from the root to the node 
(depth of G is 2, A – C – G). 

• Height of a node: The height of a node is the 
length of the path from that node to the 
deepest node.  
– A (rooted) tree with only one node (the root) has a height of zero. 

In the previous example, the height of B is 2 (B – F – J). 



• Height of the tree: It is the maximum height 
among all the nodes in the tree  

• Depth of the tree: Depth of the tree is the 
maximum depth among all the nodes in the tree.  

– For a given tree, depth and height returns the same 
value. But for individual nodes we may get different 
results. 

• Size of a node: It is the number of descendants it 
has including itself (the size of the subtree  is 3). 

 



• Skew Trees: If every node in a tree has only 
one child (except leaf nodes) then we call 
such trees skew trees.  

– If every node has only left child then we call them 
left skew trees.   
 

– If every node has only right child then we call 
them right skew trees. 

 



Skew Trees 



Binary Trees 

• Binary tree: A tree is called binary tree if each 
node has zero child, one child or two 
children.  

• Empty tree is  also a valid binary tree.  

• A binary tree as consisting of a root and two 
disjoint binary trees, called the left and right 
subtrees of the root. 

 



Generic Binary Tree 



Types of Binary Trees 

• Strict Binary Tree: A binary tree is called strict 
binary tree if each node has exactly two 
children or no children. 



Full Binary Tree: A binary tree is called full 
binary tree  
 if each node has exactly two children  
                                  and  
        all leaf nodes are at the same level. 



• Complete Binary Tree: Assume that the height 
of the binary tree is h.  
– In complete binary trees, if we give numbering for 

the nodes by starting at the root (let us say the 
root node has 1) then we get a complete 
sequence from 1 to the number of nodes in the 
tree. 

– While traversing we should give numbering for 
NULL pointers also.  

• A binary tree is called complete binary tree  
– 1) if all leaf nodes are at height h or h – 1 and  

– 2) without any missing number in the sequence. 





Complete Binary Tree 
Not a Complete Binary Tree 
Not Full Binary Tree 



Complete Binary Tree 
Not Full Binary Tree 

 



•    Examples of Complete Binary Trees  
•     1 
•   /   \ 
•  2     3 
•    
•        1 
•     /    \ 
•    2       3 
•   / 
•  4 

 
•        1 
•     /    \ 
•    2      3 
•   /  \    / 
•  4    5  6 



• The following trees are examples of Non-Complete Binary Trees 
•     1 
•       \ 
•        3 
•    
•        1 
•     /    \ 
•    2       3 
•     \     /  \    
•      4   5    6 

 
•        1 
•     /    \ 
•    2      3 
•          /  \ 
•         4    5 



Properties of Binary Trees 

• For the following properties, let us assume 
that the height of the tree is h.  

• Also, assume that root node is at height zero. 







• From the diagram we can infer the following 
properties: 

The number of nodes n in a full binary tree is 2h+1 – 1.  

Since, there are h levels we need to add all nodes at each 
level [20 + 21+ 22 + ··· + 2h = 2h+1 – 1]. 

The number of nodes n in a complete binary tree is 
between 2h (minimum) and 2h+1 – 1 (maximum). 

The number of leaf nodes in a full binary tree is 2h. 

The number of NULL links (wasted pointers) in a 
complete binary tree of n nodes is n + 1. 



Structure of Binary Trees 

• Assume that the data of the nodes are 
integers.  

– One way to represent a node (which contains 
data) is to have two links which point to left and 
right children along with data fields as shown 
below: 



Diagrammatic representation of  
Binary Tree 



• In trees, the default flow is from parent to 
children and it is not mandatory to show 
directed branches.  

• Both the representations shown below are the 
same. 



Operations on Binary Trees 

• Basic Operations 

o Inserting an element into a tree 

o Deleting an element from a tree 

o Searching for an element 

o Traversing the tree 

 



• Auxiliary Operations 

o Finding the size of the tree 

o Finding the height of the tree 

o Finding the level which has maximum sum 

o Finding the least common ancestor (LCA) for a 
given pair of nodes. 



Applications of Binary Trees 
• Following are the some of the applications where 

binary trees play an important role: 
o  Expression trees are used in compilers. 
o  Huffman coding trees that are used in data 

compression algorithms. 
o  Binary Search Tree (BST), which supports search, 

insertion and deletion on a collection of items in 
O(logn) (average). 

o  Priority Queue (PQ), which supports search and 
deletion of minimum (or maximum) on a collection of 
items in logarithmic time (in worst case). 



Binary Tree Traversals 
• The process of visiting all nodes of a tree is called 

tree traversal.  
– Each node is processed only once but it may be 

visited more than once.  

• In tree structures there are many different ways. 

• Tree traversal is like searching the tree, except 
that in traversal the goal is to move through the 
tree in a particular order.  

• All nodes are processed in the traversal but 
searching stops when the required node is 
found. 



• Traversal Possibilities: 

• Starting at the root of a binary tree, there are three 
main steps that can be performed and the order in 
which they are performed defines the traversal type.  
– These steps are: performing an action on the current node 

(referred to as “visiting” the node and denoted with “D”) 

– Traversing to the left child node (denoted with “L”), and 

– Traversing to the right child node (denoted with “R”).  

• This process can be easily described through recursion.  



• Based on the above definition there are 6 
possibilities: 

–1. LDR: Process left subtree, process the current 
node data and then process right subtree 

–2. LRD: Process left subtree, process right subtree 
and then process the current node data 



–3. DLR: Process the current node data, 
process left subtree and then process right 
subtree 

–4. DRL: Process the current node data, 
process right subtree and then process left 
subtree 



–5. RDL: Process right subtree, process the 
current node data and then process left 
subtree 

–6. RLD: Process right subtree, process left 
subtree and then process the current node 
data 

 
 



• Classifying the Traversals 

• The sequence in which these entities (nodes) are processed 
defines a particular traversal method. 

• The classification is based on the order in which current 
node is processed.  

• If we are classifying based on current node (D) and if D 
comes in the middle then it does not matter whether L is on 
left side of D or R is on left side of D. 



• It does not matter whether L is on right side of D or R 
is on right side of D.  

• Hence,the total 6 possibilities are reduced to 3 and 
these are: 

–  Preorder (DLR) Traversal 

–  Inorder (LDR) Traversal 

–  Postorder (LRD) Traversal 



• There is another traversal method which does 
not depend on the above orders and it is: 

– Level Order Traversal: This method is inspired 
from Breadth First Traversal (BFS of Graph 
algorithms). 

 



• Let us use the diagram below for the remaining 
discussion. 

 



• PreOrder Traversal 
• In preorder traversal, each node is processed 

before (pre) either of its subtrees. Even though 
each node is processed before the subtrees, it 
still requires that some information must be 
maintained while moving down the tree.  

– In the  example above, 1 is processed first, 
then the left subtree, and this is followed by 
the right subtree. 



• Therefore, processing must return to the right 
subtree after finishing the processing of the left 
subtree. So, the root information must be 
maintained.  

– The obvious ADT for such information is a 
stack.  

– Because of its LIFO structure, the information 
about the right subtrees back in the reverse 
order can be retrieved. 



• Preorder traversal is defined as follows: 

 Visit the root. 

 Traverse the left subtree in Preorder. 

 Traverse the right subtree in Preorder. 

• The nodes of tree would be visited in the 
order: 1 2 4 5 3 6 7 





• Non-Recursive Preorder Traversal 
• In the recursive version, a stack is required as we 

need to remember the current node so that after 
completing the left subtree we can go to the right 
subtree.  

• To simulate the same, first we process the current 
node and before going to the left subtree, we 
store the current node on stack.  

• After completing the left subtree processing, pop 
the element and go to its right subtree. Continue 
this process until stack is nonempty. 





• InOrder Traversal 

• In Inorder Traversal the root is visited between 
the subtrees. Inorder traversal is defined as 
follows: 
–  Traverse the left subtree in Inorder. 

–  Visit the root. 

–  Traverse the right subtree in Inorder. 

• The nodes of tree would be visited in the 
order: 4 2 5 1 6 3 7 





• Non-Recursive Inorder Traversal 

• The Non-recursive version of Inorder traversal 
is similar to Preorder. The only change is, 
instead of processing the node before going to 
left subtree, process it after popping (which is 
indicated after completion of left subtree 
processing). 

 





• PostOrder Traversal 

• In postorder traversal, the root is visited after 
both subtrees. Postorder traversal is defined 
as follows: 
–  Traverse the left subtree in Postorder. 

–  Traverse the right subtree in Postorder. 

–  Visit the root. 

• The nodes of the tree would be visited in the 
order: 4 5 2 6 7 3 1 





• Non-Recursive Postorder Traversal 

• In preorder and inorder traversals, after popping the 
stack element we do not need to visit the same vertex 
again. But in postorder traversal, each node is visited 
twice. That means, after processing the left subtree we 
will visit the current node and after processing the 
right subtree we will visit the same current node. But 
we should be processing the node during the second 
visit. 

• Here the problem is how to differentiate whether we 
are returning from the left subtree or the right subtree. 



• We use a previous variable to keep track of the earlier traversed 
node. Let’s assume current is the current node that is on top of the 
stack. When previous is current’s parent, we are traversing down 
the tree. In this case, we try to traverse to current’s left child if 
available (i.e., push left child to the stack). If it is not available, we 
look at current’s right child. If both left and right child do not exist 
(ie, current is a leaf node), we print current’s value and pop it off 
the stack. 

• If prev is current’s left child, we are traversing up the tree from the 
left. We look at current’s right child. If it is available, then traverse 
down the right child (i.e., push right child to the stack); otherwise 
print current’s value and pop it off the stack. If previous is current’s 
right child, we are traversing up the tree from the right. In this case, 
we print current’s value and pop it off the stack. 
 





• Level Order Traversal 

• Level order traversal is defined as follows: 
– Visit the root. 

– While traversing level (, keep all the elements at level ( 
+ 1 in queue. 

– Go to the next level and visit all the nodes at that 
level. 

– Repeat this until all levels are completed. 

• The nodes of the tree are visited in the order: 1 2 
3 4 5 6 7 





Binary Search Trees (BSTs) 

• Why Binary Search Trees? 

• A variant of binary trees is Binary Search Trees 
(BSTs). 

• As the name suggests, the main use of this 
representation is for searching.  

• In this representation we impose restriction 
on the kind of data a node can contain. As a 
result, it reduces the worst case average 
search operation to O(logn). 



Binary Search Tree Property 

• In binary search trees, all the left subtree elements 
should be less than root data and all the right subtree 
elements should be greater than root data.  

• This is called binary search tree property.  
• This property should be satisfied at every node in the 

tree. 
  The left subtree of a node contains only nodes with keys 

less than the nodes key. 
  The right subtree of a node contains only nodes with keys 

greater than the nodes key. 
  Both the left and right subtrees must also be binary search 

trees. 





• Example: The left tree is a binary search tree 
and the right tree is not a binary search tree 
(at node 6 it’s not satisfying the binary search 
tree property). 





• Binary Search Tree Declaration 

 



• Operations on Binary Search Trees 

• Main operations: Following are the main 
operations that are supported by binary 
search trees: 

– Find/ Find Minimum / Find Maximum element in 
binary search trees 

– Inserting an element in binary search trees 

–  Deleting an element from binary search trees 



• Operations on Binary Search Trees 

• Main operations: Following are the main operations 
that are supported by binary search trees: 
–  Find/ Find Minimum / Find Maximum element in binary 

search trees 

–  Inserting an element in binary search trees 

–  Deleting an element from binary search trees 

– Auxiliary operations: Checking whether the given tree is a 
binary search tree or not 

–  Finding kth-smallest element in tree 

–  Sorting the elements of binary search tree and many more 



Important Notes on Binary Search Trees 
•  Since root data is always between left subtree data and right 

subtree data, performing in order traversal on binary search tree 
produces a sorted list. 

• While solving problems on binary search trees, first we process left 
subtree, then root data, and finally we process right subtree. This 
means, depending on the problem, only the intermediate step 
(processing root data) changes and we do not touch the first and 
third steps. 

• If we are searching for an element and if the left subtree root data 
is less than the element we want to search, then skip it. The same is 
the case with the right subtree.. Because of this, binary search trees 
take less time for searching an element than regular binary trees. In 
other words, the binary search trees consider either left or right 
subtrees for searching an element but not both. 



• The basic operations that can be performed on binary 
search tree (BST) are insertion of element, deletion of 
element, and searching for an element. While 
performing these operations on BST the height of the 
tree gets changed each time. Hence there exists 
variations in time complexities of best case, average 
case, and worst case.  

• The basic operations on a binary search tree take time 
proportional to the height of the tree. For a complete 
binary tree with node n, such operations runs in O(lgn) 
worst-case time. If the tree is a linear chain of n nodes 
(skew-tree), however, the same operations takes O(n) 
worst-case time. 



Finding an Element in Binary Search Trees 

• Start with the root and keep moving left or 
right using the BST property.  

• If the data we are searching is same as nodes 
data then we return current node. 

If the data we are searching is less than nodes data 
then search left subtree of current node;  

otherwise search right subtree of current node.  

If the data is not present, we end up in a NULL link. 



Time Complexity: O(n), in worst case (when BST is a skew tree). Space Complexity: 
O(n), for recursive stack. 



• Non recursive version of the above algorithm 
can be given as: 

 



• Finding Minimum Element in Binary Search 
Trees 

• In BSTs, the minimum element is the left-most 
node, which does not has left child. In the BST 
below, the minimum element is 4. 









• Finding Maximum Element in Binary Search 
Trees 

• In BSTs, the maximum element is the right-
most node, which does not have right child. In 
the BST below, the maximum element is 16. 







• Non recursive version of the above algorithm 
can be given as: 

 


