
Trees

What is a Tree?

• A tree is a data structure similar to a linked list
but instead of each node pointing simply to the
next node in a linear fashion, each node points to
a number of nodes.

• Tree is an example of a nonlinear data structure.

• A tree structure is a way of representing the
hierarchical nature of a structure in a graphical
form.

• In trees ADT (Abstract Data Type), the order of
the elements is not important.

Glossary

Definitions

• Root: The root of a tree is the node
with no parents. There can be at
most one root node in a tree (node
A in the above example).

• Edge: An edge refers to the link from
parent to child (all links in the
figure).

• Leaf: A node with no children is
called leaf node (E,J,K,H and I).

• Sibblings: Children of same
parent are called siblings (B,C,D
are siblings of A, and E,F are the
siblings of B).

• Ancestor of a Node: A node p is an ancestor of
node q if there exists a path from root to q and p
appears on the path. The node q is called a
descendant of p.

– For example, A,C and G are the ancestors of K.

• Level: The set of all nodes at a given depth is called
the level of the tree (B, C and D are the same level).
The root node is at level zero.

• Depth of a node :The depth of a node is the
length of the path from the root to the node
(depth of G is 2, A – C – G).

• Height of a node: The height of a node is the
length of the path from that node to the
deepest node.
– A (rooted) tree with only one node (the root) has a height of zero.

In the previous example, the height of B is 2 (B – F – J).

• Height of the tree: It is the maximum height
among all the nodes in the tree

• Depth of the tree: Depth of the tree is the
maximum depth among all the nodes in the tree.

– For a given tree, depth and height returns the same
value. But for individual nodes we may get different
results.

• Size of a node: It is the number of descendants it
has including itself (the size of the subtree is 3).

• Skew Trees: If every node in a tree has only
one child (except leaf nodes) then we call
such trees skew trees.

– If every node has only left child then we call them
left skew trees.

– If every node has only right child then we call
them right skew trees.

Skew Trees

Binary Trees

• Binary tree: A tree is called binary tree if each
node has zero child, one child or two
children.

• Empty tree is also a valid binary tree.

• A binary tree as consisting of a root and two
disjoint binary trees, called the left and right
subtrees of the root.

Generic Binary Tree

Types of Binary Trees

• Strict Binary Tree: A binary tree is called strict
binary tree if each node has exactly two
children or no children.

Full Binary Tree: A binary tree is called full
binary tree
 if each node has exactly two children
 and
 all leaf nodes are at the same level.

• Complete Binary Tree: Assume that the height
of the binary tree is h.
– In complete binary trees, if we give numbering for

the nodes by starting at the root (let us say the
root node has 1) then we get a complete
sequence from 1 to the number of nodes in the
tree.

– While traversing we should give numbering for
NULL pointers also.

• A binary tree is called complete binary tree
– 1) if all leaf nodes are at height h or h – 1 and

– 2) without any missing number in the sequence.

Complete Binary Tree
Not a Complete Binary Tree
Not Full Binary Tree

Complete Binary Tree
Not Full Binary Tree

• Examples of Complete Binary Trees
• 1
• / \
• 2 3
•
• 1
• / \
• 2 3
• /
• 4

• 1
• / \
• 2 3
• / \ /
• 4 5 6

• The following trees are examples of Non-Complete Binary Trees
• 1
• \
• 3
•
• 1
• / \
• 2 3
• \ / \
• 4 5 6

• 1
• / \
• 2 3
• / \
• 4 5

Properties of Binary Trees

• For the following properties, let us assume
that the height of the tree is h.

• Also, assume that root node is at height zero.

• From the diagram we can infer the following
properties:

The number of nodes n in a full binary tree is 2h+1 – 1.

Since, there are h levels we need to add all nodes at each
level [20 + 21+ 22 + ··· + 2h = 2h+1 – 1].

The number of nodes n in a complete binary tree is
between 2h (minimum) and 2h+1 – 1 (maximum).

The number of leaf nodes in a full binary tree is 2h.

The number of NULL links (wasted pointers) in a
complete binary tree of n nodes is n + 1.

Structure of Binary Trees

• Assume that the data of the nodes are
integers.

– One way to represent a node (which contains
data) is to have two links which point to left and
right children along with data fields as shown
below:

Diagrammatic representation of
Binary Tree

• In trees, the default flow is from parent to
children and it is not mandatory to show
directed branches.

• Both the representations shown below are the
same.

Operations on Binary Trees

• Basic Operations

o Inserting an element into a tree

o Deleting an element from a tree

o Searching for an element

o Traversing the tree

• Auxiliary Operations

o Finding the size of the tree

o Finding the height of the tree

o Finding the level which has maximum sum

o Finding the least common ancestor (LCA) for a
given pair of nodes.

Applications of Binary Trees
• Following are the some of the applications where

binary trees play an important role:
o Expression trees are used in compilers.
o Huffman coding trees that are used in data

compression algorithms.
o Binary Search Tree (BST), which supports search,

insertion and deletion on a collection of items in
O(logn) (average).

o Priority Queue (PQ), which supports search and
deletion of minimum (or maximum) on a collection of
items in logarithmic time (in worst case).

Binary Tree Traversals
• The process of visiting all nodes of a tree is called

tree traversal.
– Each node is processed only once but it may be

visited more than once.

• In tree structures there are many different ways.

• Tree traversal is like searching the tree, except
that in traversal the goal is to move through the
tree in a particular order.

• All nodes are processed in the traversal but
searching stops when the required node is
found.

• Traversal Possibilities:

• Starting at the root of a binary tree, there are three
main steps that can be performed and the order in
which they are performed defines the traversal type.
– These steps are: performing an action on the current node

(referred to as “visiting” the node and denoted with “D”)

– Traversing to the left child node (denoted with “L”), and

– Traversing to the right child node (denoted with “R”).

• This process can be easily described through recursion.

• Based on the above definition there are 6
possibilities:

–1. LDR: Process left subtree, process the current
node data and then process right subtree

–2. LRD: Process left subtree, process right subtree
and then process the current node data

–3. DLR: Process the current node data,
process left subtree and then process right
subtree

–4. DRL: Process the current node data,
process right subtree and then process left
subtree

–5. RDL: Process right subtree, process the
current node data and then process left
subtree

–6. RLD: Process right subtree, process left
subtree and then process the current node
data

• Classifying the Traversals

• The sequence in which these entities (nodes) are processed
defines a particular traversal method.

• The classification is based on the order in which current
node is processed.

• If we are classifying based on current node (D) and if D
comes in the middle then it does not matter whether L is on
left side of D or R is on left side of D.

• It does not matter whether L is on right side of D or R
is on right side of D.

• Hence,the total 6 possibilities are reduced to 3 and
these are:

– Preorder (DLR) Traversal

– Inorder (LDR) Traversal

– Postorder (LRD) Traversal

• There is another traversal method which does
not depend on the above orders and it is:

– Level Order Traversal: This method is inspired
from Breadth First Traversal (BFS of Graph
algorithms).

• Let us use the diagram below for the remaining
discussion.

• PreOrder Traversal
• In preorder traversal, each node is processed

before (pre) either of its subtrees. Even though
each node is processed before the subtrees, it
still requires that some information must be
maintained while moving down the tree.

– In the example above, 1 is processed first,
then the left subtree, and this is followed by
the right subtree.

• Therefore, processing must return to the right
subtree after finishing the processing of the left
subtree. So, the root information must be
maintained.

– The obvious ADT for such information is a
stack.

– Because of its LIFO structure, the information
about the right subtrees back in the reverse
order can be retrieved.

• Preorder traversal is defined as follows:

 Visit the root.

 Traverse the left subtree in Preorder.

 Traverse the right subtree in Preorder.

• The nodes of tree would be visited in the
order: 1 2 4 5 3 6 7

• Non-Recursive Preorder Traversal
• In the recursive version, a stack is required as we

need to remember the current node so that after
completing the left subtree we can go to the right
subtree.

• To simulate the same, first we process the current
node and before going to the left subtree, we
store the current node on stack.

• After completing the left subtree processing, pop
the element and go to its right subtree. Continue
this process until stack is nonempty.

• InOrder Traversal

• In Inorder Traversal the root is visited between
the subtrees. Inorder traversal is defined as
follows:
– Traverse the left subtree in Inorder.

– Visit the root.

– Traverse the right subtree in Inorder.

• The nodes of tree would be visited in the
order: 4 2 5 1 6 3 7

• Non-Recursive Inorder Traversal

• The Non-recursive version of Inorder traversal
is similar to Preorder. The only change is,
instead of processing the node before going to
left subtree, process it after popping (which is
indicated after completion of left subtree
processing).

• PostOrder Traversal

• In postorder traversal, the root is visited after
both subtrees. Postorder traversal is defined
as follows:
– Traverse the left subtree in Postorder.

– Traverse the right subtree in Postorder.

– Visit the root.

• The nodes of the tree would be visited in the
order: 4 5 2 6 7 3 1

• Non-Recursive Postorder Traversal

• In preorder and inorder traversals, after popping the
stack element we do not need to visit the same vertex
again. But in postorder traversal, each node is visited
twice. That means, after processing the left subtree we
will visit the current node and after processing the
right subtree we will visit the same current node. But
we should be processing the node during the second
visit.

• Here the problem is how to differentiate whether we
are returning from the left subtree or the right subtree.

• We use a previous variable to keep track of the earlier traversed
node. Let’s assume current is the current node that is on top of the
stack. When previous is current’s parent, we are traversing down
the tree. In this case, we try to traverse to current’s left child if
available (i.e., push left child to the stack). If it is not available, we
look at current’s right child. If both left and right child do not exist
(ie, current is a leaf node), we print current’s value and pop it off
the stack.

• If prev is current’s left child, we are traversing up the tree from the
left. We look at current’s right child. If it is available, then traverse
down the right child (i.e., push right child to the stack); otherwise
print current’s value and pop it off the stack. If previous is current’s
right child, we are traversing up the tree from the right. In this case,
we print current’s value and pop it off the stack.

• Level Order Traversal

• Level order traversal is defined as follows:
– Visit the root.

– While traversing level (, keep all the elements at level (
+ 1 in queue.

– Go to the next level and visit all the nodes at that
level.

– Repeat this until all levels are completed.

• The nodes of the tree are visited in the order: 1 2
3 4 5 6 7

Binary Search Trees (BSTs)

• Why Binary Search Trees?

• A variant of binary trees is Binary Search Trees
(BSTs).

• As the name suggests, the main use of this
representation is for searching.

• In this representation we impose restriction
on the kind of data a node can contain. As a
result, it reduces the worst case average
search operation to O(logn).

Binary Search Tree Property

• In binary search trees, all the left subtree elements
should be less than root data and all the right subtree
elements should be greater than root data.

• This is called binary search tree property.
• This property should be satisfied at every node in the

tree.
 The left subtree of a node contains only nodes with keys

less than the nodes key.
 The right subtree of a node contains only nodes with keys

greater than the nodes key.
 Both the left and right subtrees must also be binary search

trees.

• Example: The left tree is a binary search tree
and the right tree is not a binary search tree
(at node 6 it’s not satisfying the binary search
tree property).

• Binary Search Tree Declaration

• Operations on Binary Search Trees

• Main operations: Following are the main
operations that are supported by binary
search trees:

– Find/ Find Minimum / Find Maximum element in
binary search trees

– Inserting an element in binary search trees

– Deleting an element from binary search trees

• Operations on Binary Search Trees

• Main operations: Following are the main operations
that are supported by binary search trees:
– Find/ Find Minimum / Find Maximum element in binary

search trees

– Inserting an element in binary search trees

– Deleting an element from binary search trees

– Auxiliary operations: Checking whether the given tree is a
binary search tree or not

– Finding kth-smallest element in tree

– Sorting the elements of binary search tree and many more

Important Notes on Binary Search Trees
• Since root data is always between left subtree data and right

subtree data, performing in order traversal on binary search tree
produces a sorted list.

• While solving problems on binary search trees, first we process left
subtree, then root data, and finally we process right subtree. This
means, depending on the problem, only the intermediate step
(processing root data) changes and we do not touch the first and
third steps.

• If we are searching for an element and if the left subtree root data
is less than the element we want to search, then skip it. The same is
the case with the right subtree.. Because of this, binary search trees
take less time for searching an element than regular binary trees. In
other words, the binary search trees consider either left or right
subtrees for searching an element but not both.

• The basic operations that can be performed on binary
search tree (BST) are insertion of element, deletion of
element, and searching for an element. While
performing these operations on BST the height of the
tree gets changed each time. Hence there exists
variations in time complexities of best case, average
case, and worst case.

• The basic operations on a binary search tree take time
proportional to the height of the tree. For a complete
binary tree with node n, such operations runs in O(lgn)
worst-case time. If the tree is a linear chain of n nodes
(skew-tree), however, the same operations takes O(n)
worst-case time.

Finding an Element in Binary Search Trees

• Start with the root and keep moving left or
right using the BST property.

• If the data we are searching is same as nodes
data then we return current node.

If the data we are searching is less than nodes data
then search left subtree of current node;

otherwise search right subtree of current node.

If the data is not present, we end up in a NULL link.

Time Complexity: O(n), in worst case (when BST is a skew tree). Space Complexity:
O(n), for recursive stack.

• Non recursive version of the above algorithm
can be given as:

• Finding Minimum Element in Binary Search
Trees

• In BSTs, the minimum element is the left-most
node, which does not has left child. In the BST
below, the minimum element is 4.

• Finding Maximum Element in Binary Search
Trees

• In BSTs, the maximum element is the right-
most node, which does not have right child. In
the BST below, the maximum element is 16.

• Non recursive version of the above algorithm
can be given as:

